1 エグゼクティブサマリー
1.1 市場規模 2024-2025年
1.2 市場成長 2025年(予測)-2034年(予測)
1.3 主要な需要ドライバー
1.4 主要プレイヤーと競争構造
1.5 業界のベストプラクティス
1.6 最近の動向と発展
1.7 業界見通し
2 市場概要とステークホルダーの洞察
2.1 市場動向
2.2 主要垂直市場
2.3 主要地域
2.4 供給者パワー
2.5 購買者パワー
2.6 主要市場機会とリスク
2.7 ステークホルダーによる主要イニシアチブ
3 経済概要
3.1 GDP見通し
3.2 一人当たりGDP成長率
3.3 インフレ動向
3.4 民主主義指数
3.5 公的総債務比率
3.6 国際収支(BoP)ポジション
3.7 人口見通し
3.8 都市化動向
4 国別リスクプロファイル
4.1 国別リスク
4.2 ビジネス環境
5 グローバル静的VAR補償器市場分析
5.1 主要産業ハイライト
5.2 グローバル静的VAR補償器市場の歴史的推移(2018-2024)
5.3 グローバル静的VAR補償器市場予測(2025-2034)
5.4 グローバル静的VAR補償器市場:タイプ別
5.4.1 サイリスタベース
5.4.1.1 市場シェア
5.4.1.2 過去動向(2018-2024)
5.4.1.3 予測動向(2025-2034)
5.4.2 磁気制御リアクトル(MCR)ベース
5.4.2.1 市場シェア
5.4.2.2 過去動向(2018-2024)
5.4.2.3 予測動向(2025-2034)
5.5 グローバル静的無効電力補償装置市場:構成要素別
5.5.1 パワーエレクトロニクスデバイス
5.5.1.1 市場シェア
5.5.1.2 過去動向(2018-2024)
5.5.1.3 予測動向(2025-2034)
5.5.2 高調波フィルタ
5.5.2.1 市場シェア
5.5.2.2 過去動向(2018-2024年)
5.5.2.3 予測動向(2025-2034年)
5.5.3 サイリスタ
5.5.3.1 市場シェア
5.5.3.2 過去動向(2018-2024年)
5.5.3.3 予測動向(2025-2034)
5.5.4 リアクトル
5.5.4.1 市場シェア
5.5.4.2 過去動向(2018-2024)
5.5.4.3 予測動向(2025-2034)
5.5.5 コンデンサバンク
5.5.5.1 市場シェア
5.5.5.2 過去動向(2018-2024)
5.5.5.3 予測動向(2025-2034)
5.5.6 GIS開閉装置
5.5.6.1 市場シェア
5.5.6.2 過去動向(2018-2024)
5.5.6.3 予測動向(2025-2034)
5.5.7 その他
5.6 用途別グローバル静的無効電力補償装置市場
5.6.1 電力会社
5.6.1.1 市場シェア
5.6.1.2 過去動向(2018-2024)
5.6.1.3 予測動向(2025-2034)
5.6.2 再生可能エネルギー
5.6.2.1 市場シェア
5.6.2.2 過去動向(2018-2024)
5.6.2.3 予測動向(2025-2034)
5.6.3 鉄道
5.6.3.1 市場シェア
5.6.3.2 過去動向(2018-2024)
5.6.3.3 予測動向(2025-2034)
5.6.4 産業用
5.6.4.1 市場シェア
5.6.4.2 過去動向(2018-2024)
5.6.4.3 予測動向(2025-2034)
5.6.5 石油・ガス
5.6.5.1 市場シェア
5.6.5.2 過去動向(2018-2024)
5.6.5.3 予測動向(2025-2034)
5.6.6 その他
5.7 地域別グローバル静的VAR補償器市場
5.7.1 市場シェア
5.7.1.1 北米
5.7.1.2 欧州
5.7.1.3 アジア太平洋
5.7.1.4 ラテンアメリカ
5.7.1.5 中東・アフリカ
6 地域別分析
6.1 北米
6.1.1 過去動向(2018-2024年)
6.1.2 予測動向(2025-2034年)
6.1.3 国別内訳
6.1.3.1 アメリカ合衆国
6.1.3.2 カナダ
6.2 欧州
6.2.1 過去動向(2018-2024年)
6.2.2 予測動向(2025-2034)
6.2.3 国別内訳
6.2.3.1 イギリス
6.2.3.2 ドイツ
6.2.3.3 フランス
6.2.3.4 イタリア
6.2.3.5 その他
6.3 アジア太平洋地域
6.3.1 過去の実績推移(2018-2024年)
6.3.2 予測推移(2025-2034年)
6.3.3 国別内訳
6.3.3.1 中国
6.3.3.2 日本
6.3.3.3 インド
6.3.3.4 ASEAN
6.3.3.5 オーストラリア
6.3.3.6 その他
6.4 ラテンアメリカ
6.4.1 過去動向(2018-2024年)
6.4.2 予測動向(2025-2034年)
6.4.3 国別内訳
6.4.3.1 ブラジル
6.4.3.2 アルゼンチン
6.4.3.3 メキシコ
6.4.3.4 その他
6.5 中東・アフリカ
6.5.1 過去動向(2018-2024年)
6.5.2 予測動向(2025-2034年)
6.5.3 国別内訳
6.5.3.1 サウジアラビア
6.5.3.2 アラブ首長国連邦
6.5.3.3 ナイジェリア
6.5.3.4 南アフリカ
6.5.3.5 その他
7 市場ダイナミクス
7.1 SWOT分析
7.1.1 強み
7.1.2 弱み
7.1.3 機会
7.1.4 脅威
7.2 ポーターの5つの力分析
7.2.1 供給者の交渉力
7.2.2 購入者の交渉力
7.2.3 新規参入の脅威
7.2.4 競争の激しさ
7.2.5 代替品の脅威
7.3 需要の主要指標
7.4 価格の主要指標
8 競争環境
8.1 供給業者の選定
8.2 主要グローバル企業
8.3 主要地域企業
8.4 主要企業の戦略
8.5 企業プロファイル
8.5.1 シーメンス・エナジー
8.5.1.1 会社概要
8.5.1.2 製品ポートフォリオ
8.5.1.3 顧客層と実績
8.5.1.4 認証
8.5.2 日立エナジー株式会社
8.5.2.1 会社概要
8.5.2.2 製品ポートフォリオ
8.5.2.3 顧客層と実績
8.5.2.4 認証
8.5.3 ゼネラル・エレクトリック社
8.5.3.1 会社概要
8.5.3.2 製品ポートフォリオ
8.5.3.3 市場規模と実績
8.5.3.4 認証
8.5.4 三菱電機株式会社
8.5.4.1 会社概要
8.5.4.2 製品ポートフォリオ
8.5.4.3 対象人口層と実績
8.5.4.4 認証
8.5.5 Nidec ASI S.p.A.
8.5.5.1 会社概要
8.5.5.2 製品ポートフォリオ
8.5.5.3 対象人口層と実績
8.5.5.4 認証
8.5.6 その他
1.1 Market Size 2024-2025
1.2 Market Growth 2025(F)-2034(F)
1.3 Key Demand Drivers
1.4 Key Players and Competitive Structure
1.5 Industry Best Practices
1.6 Recent Trends and Developments
1.7 Industry Outlook
2 Market Overview and Stakeholder Insights
2.1 Market Trends
2.2 Key Verticals
2.3 Key Regions
2.4 Supplier Power
2.5 Buyer Power
2.6 Key Market Opportunities and Risks
2.7 Key Initiatives by Stakeholders
3 Economic Summary
3.1 GDP Outlook
3.2 GDP Per Capita Growth
3.3 Inflation Trends
3.4 Democracy Index
3.5 Gross Public Debt Ratios
3.6 Balance of Payment (BoP) Position
3.7 Population Outlook
3.8 Urbanisation Trends
4 Country Risk Profiles
4.1 Country Risk
4.2 Business Climate
5 Global Static VAR Compensator Market Analysis
5.1 Key Industry Highlights
5.2 Global Static VAR Compensator Historical Market (2018-2024)
5.3 Global Static VAR Compensator Market Forecast (2025-2034)
5.4 Global Static VAR Compensator Market by Type
5.4.1 Thyristor-based
5.4.1.1 Market Share
5.4.1.2 Historical Trend (2018-2024)
5.4.1.3 Forecast Trend (2025-2034)
5.4.2 Magnetically Controlled Reactor (MCR)-based
5.4.2.1 Market Share
5.4.2.2 Historical Trend (2018-2024)
5.4.2.3 Forecast Trend (2025-2034)
5.5 Global Static VAR Compensator Market by Component
5.5.1 Power Electronics Devices
5.5.1.1 Market Share
5.5.1.2 Historical Trend (2018-2024)
5.5.1.3 Forecast Trend (2025-2034)
5.5.2 Harmonic Filter
5.5.2.1 Market Share
5.5.2.2 Historical Trend (2018-2024)
5.5.2.3 Forecast Trend (2025-2034)
5.5.3 Thyristor
5.5.3.1 Market Share
5.5.3.2 Historical Trend (2018-2024)
5.5.3.3 Forecast Trend (2025-2034)
5.5.4 Reactor
5.5.4.1 Market Share
5.5.4.2 Historical Trend (2018-2024)
5.5.4.3 Forecast Trend (2025-2034)
5.5.5 Capacitor Bank
5.5.5.1 Market Share
5.5.5.2 Historical Trend (2018-2024)
5.5.5.3 Forecast Trend (2025-2034)
5.5.6 GIS Switchgear
5.5.6.1 Market Share
5.5.6.2 Historical Trend (2018-2024)
5.5.6.3 Forecast Trend (2025-2034)
5.5.7 Others
5.6 Global Static VAR Compensator Market by End Use
5.6.1 Electric Utility
5.6.1.1 Market Share
5.6.1.2 Historical Trend (2018-2024)
5.6.1.3 Forecast Trend (2025-2034)
5.6.2 Renewable Energy
5.6.2.1 Market Share
5.6.2.2 Historical Trend (2018-2024)
5.6.2.3 Forecast Trend (2025-2034)
5.6.3 Railway
5.6.3.1 Market Share
5.6.3.2 Historical Trend (2018-2024)
5.6.3.3 Forecast Trend (2025-2034)
5.6.4 Industrial
5.6.4.1 Market Share
5.6.4.2 Historical Trend (2018-2024)
5.6.4.3 Forecast Trend (2025-2034)
5.6.5 Oil and Gas
5.6.5.1 Market Share
5.6.5.2 Historical Trend (2018-2024)
5.6.5.3 Forecast Trend (2025-2034)
5.6.6 Others
5.7 Global Static VAR Compensator Market by Region
5.7.1 Market Share
5.7.1.1 North America
5.7.1.2 Europe
5.7.1.3 Asia Pacific
5.7.1.4 Latin America
5.7.1.5 Middle East and Africa
6 Regional Analysis
6.1 North America
6.1.1 Historical Trend (2018-2024)
6.1.2 Forecast Trend (2025-2034)
6.1.3 Breakup by Country
6.1.3.1 United States of America
6.1.3.2 Canada
6.2 Europe
6.2.1 Historical Trend (2018-2024)
6.2.2 Forecast Trend (2025-2034)
6.2.3 Breakup by Country
6.2.3.1 United Kingdom
6.2.3.2 Germany
6.2.3.3 France
6.2.3.4 Italy
6.2.3.5 Others
6.3 Asia Pacific
6.3.1 Historical Trend (2018-2024)
6.3.2 Forecast Trend (2025-2034)
6.3.3 Breakup by Country
6.3.3.1 China
6.3.3.2 Japan
6.3.3.3 India
6.3.3.4 ASEAN
6.3.3.5 Australia
6.3.3.6 Others
6.4 Latin America
6.4.1 Historical Trend (2018-2024)
6.4.2 Forecast Trend (2025-2034)
6.4.3 Breakup by Country
6.4.3.1 Brazil
6.4.3.2 Argentina
6.4.3.3 Mexico
6.4.3.4 Others
6.5 Middle East and Africa
6.5.1 Historical Trend (2018-2024)
6.5.2 Forecast Trend (2025-2034)
6.5.3 Breakup by Country
6.5.3.1 Saudi Arabia
6.5.3.2 United Arab Emirates
6.5.3.3 Nigeria
6.5.3.4 South Africa
6.5.3.5 Others
7 Market Dynamics
7.1 SWOT Analysis
7.1.1 Strengths
7.1.2 Weaknesses
7.1.3 Opportunities
7.1.4 Threats
7.2 Porter’s Five Forces Analysis
7.2.1 Supplier’s Power
7.2.2 Buyer’s Power
7.2.3 Threat of New Entrants
7.2.4 Degree of Rivalry
7.2.5 Threat of Substitutes
7.3 Key Indicators for Demand
7.4 Key Indicators for Price
8 Competitive Landscape
8.1 Supplier Selection
8.2 Key Global Players
8.3 Key Regional Players
8.4 Key Player Strategies
8.5 Company Profiles
8.5.1 Siemens Energy
8.5.1.1 Company Overview
8.5.1.2 Product Portfolio
8.5.1.3 Demographic Reach and Achievements
8.5.1.4 Certifications
8.5.2 Hitachi Energy Ltd.
8.5.2.1 Company Overview
8.5.2.2 Product Portfolio
8.5.2.3 Demographic Reach and Achievements
8.5.2.4 Certifications
8.5.3 General Electric Company
8.5.3.1 Company Overview
8.5.3.2 Product Portfolio
8.5.3.3 Demographic Reach and Achievements
8.5.3.4 Certifications
8.5.4 Mitsubishi Electric Corporation
8.5.4.1 Company Overview
8.5.4.2 Product Portfolio
8.5.4.3 Demographic Reach and Achievements
8.5.4.4 Certifications
8.5.5 Nidec ASI S.p.A.
8.5.5.1 Company Overview
8.5.5.2 Product Portfolio
8.5.5.3 Demographic Reach and Achievements
8.5.5.4 Certifications
8.5.6 Others
| ※参考情報 静的無効電力補償装置(Static VAR Compensator、SVC)は、電力システムの安定性や効率の向上を目的とする補償装置の一つです。無効電力とは、電気回路内でエネルギーの一時的な蓄積を行う電力であり、これが過剰または不足すると、電力品質の低下や設備の損傷を引き起こす可能性があります。SVCは、この無効電力を調整することにより、電圧の安定化や電力設備の負荷条件に応じた最適化を図ります。 SVCの基本的な構成は、可変容量の静的デバイスと制御システムから成り立っています。一般的に、コンドクタ(コンデンサ)やリアクタ(インダクタ)を組み合わせることで、電力系統の系統電圧を安定させる役割を果たします。これにより、瞬時の需要変動や負荷条件の変化に迅速に対応できるため、より信頼性の高い電力供給が実現されます。 SVCには大きく分けて二つのタイプがあります。ひとつは、サイリスタ制御コンデンサ(TCR:Thyristor Controlled Reactor)であり、もうひとつは、サイリスタ制御コンデンサ(TSC:Thyristor Switched Capacitor)です。TCRは、リアクタのインダクタンスをサイリスタを使って調整し、無効電力を吸収する能力を持っています。一方、TSCは、サイリスタにより複数のコンデンサをスイッチングして、必要に応じて無効電力を供給することができます。 SVCの用途は多岐にわたります。特に大規模な発電所や変電所、産業用の電力供給システム、鉄道やトロリーバスなどの公共交通機関において、電圧の安定化が重要です。また、風力発電や太陽光発電が普及する中で、これらの再生可能エネルギー源の変動性を補うためにもSVCは利用されています。さらに、電力市場の取引条件に応じた電力の最適化や、電力網の動的安定性の向上にも寄与しています。 関連技術としては、静的同期補償装置(STATCOM)があります。STATCOMは、SVCよりも高レベルの電圧制御が可能で、高速な応答性を持っています。これにより、電力システムの動的安定性をさらに向上させることができます。STATCOMは、特に高スイッチング周波数を持つパワーエレクトロニクス技術によって制御されるため、非常に柔軟な運用が可能です。 SVCの利点には、構造が比較的シンプルであるため、設置やメンテナンスが容易である点が挙げられます。また、反応速度が速いため、瞬時の需要変動にも対応できる特性があります。しかし、デメリットとしては、電力損失が比較的高いことや、高コストの設備であることが考えられます。また、周囲の電磁環境に影響を与える可能性があるため、その設置には注意が必要です。 昨今、持続可能なエネルギーの重要性が高まる中で、DVCは電力の効率的な利用と安定供給を実現するための重要な要素となっています。電力網の変化に適応し、強化し続けるためにも、SVCはますます重要な役割を果たすと考えられます。今後の技術革新とともに、その運用形態や効果の向上が期待されています。 |
❖ 免責事項 ❖
http://www.globalresearch.jp/disclaimer


-gr.jpg)