1 エグゼクティブサマリー
1.1 市場規模 2024-2025年
1.2 市場成長 2025年(予測)-2034年(予測)
1.3 主な需要ドライバー
1.4 主要プレイヤーと競争構造
1.5 業界のベストプラクティス
1.6 最近の動向と発展
1.7 業界見通し
2 市場概要とステークホルダーの洞察
2.1 市場動向
2.2 主要垂直市場
2.3 主要地域
2.4 供給者パワー
2.5 購買者パワー
2.6 主要市場機会とリスク
2.7 ステークホルダーによる主要イニシアチブ
3 経済概要
3.1 GDP見通し
3.2 一人当たりGDP成長率
3.3 インフレ動向
3.4 民主主義指数
3.5 総公的債務比率
3.6 国際収支(BoP)ポジション
3.7 人口見通し
3.8 都市化動向
4 国別リスクプロファイル
4.1 国別リスク
4.2 ビジネス環境
5 グローバル・インサーキットテスト市場分析
5.1 主要産業ハイライト
5.2 グローバル・インサーキットテスト市場の歴史的推移(2018-2024)
5.3 世界のインサーキットテスト市場予測(2025-2034)
5.4 世界のインサーキットテスト市場:タイプ別
5.4.1 アナログ
5.4.1.1 過去動向(2018-2024)
5.4.1.2 予測動向(2025-2034)
5.4.2 混合型
5.4.2.1 過去動向(2018-2024)
5.4.2.2 予測動向(2025-2034)
5.5 携帯性別グローバル回路内テスト市場
5.5.1 コンパクト型
5.5.1.1 過去動向(2018-2024)
5.5.1.2 予測動向(2025-2034)
5.5.2 ベンチトップ型
5.5.2.1 過去動向(2018-2024)
5.5.2.2 予測動向(2025-2034)
5.6 用途別グローバル回路内テスト市場
5.6.1 航空宇宙、防衛及び政府サービス
5.6.1.1 過去動向(2018-2024)
5.6.1.2 予測動向(2025-2034)
5.6.2 民生用電子機器
5.6.2.1 過去動向(2018-2024年)
5.6.2.2 予測動向(2025-2034年)
5.6.3 医療機器
5.6.3.1 過去動向(2018-2024年)
5.6.3.2 予測動向(2025-2034年)
5.6.4 無線通信
5.6.4.1 過去動向(2018-2024)
5.6.4.2 予測動向(2025-2034)
5.6.5 その他
5.7 地域別グローバル回路内テスト市場
5.7.1 北米
5.7.1.1 過去動向(2018-2024年)
5.7.1.2 予測動向(2025-2034年)
5.7.2 欧州
5.7.2.1 過去動向(2018-2024年)
5.7.2.2 予測動向(2025-2034年)
5.7.3 アジア太平洋地域
5.7.3.1 過去動向(2018-2024年)
5.7.3.2 予測動向(2025-2034年)
5.7.4 ラテンアメリカ
5.7.4.1 過去動向(2018-2024年)
5.7.4.2 予測動向(2025-2034)
5.7.5 中東・アフリカ
5.7.5.1 過去動向(2018-2024)
5.7.5.2 予測動向(2025-2034)
6 北米インサーキットテスト市場分析
6.1 アメリカ合衆国
6.1.1 過去動向(2018-2024年)
6.1.2 予測動向(2025-2034年)
6.2 カナダ
6.2.1 過去動向(2018-2024年)
6.2.2 予測動向(2025-2034年)
7 欧州インサーキットテスト市場分析
7.1 イギリス
7.1.1 過去動向(2018-2024年)
7.1.2 予測動向(2025-2034年)
7.2 ドイツ
7.2.1 過去動向(2018-2024年)
7.2.2 予測動向(2025-2034年)
7.3 フランス
7.3.1 過去動向(2018-2024年)
7.3.2 予測動向(2025-2034年)
7.4 イタリア
7.4.1 過去動向(2018-2024年)
7.4.2 予測動向(2025-2034年)
7.5 その他
8 アジア太平洋地域のインサーキットテスト市場分析
8.1 中国
8.1.1 過去の実績推移(2018-2024)
8.1.2 予測推移(2025-2034)
8.2 日本
8.2.1 過去動向(2018-2024年)
8.2.2 予測動向(2025-2034年)
8.3 インド
8.3.1 過去動向(2018-2024年)
8.3.2 予測動向(2025-2034年)
8.4 ASEAN
8.4.1 過去動向(2018-2024)
8.4.2 予測動向(2025-2034)
8.5 オーストラリア
8.5.1 過去動向(2018-2024)
8.5.2 予測動向(2025-2034)
8.6 その他
9 ラテンアメリカ・インサーキットテスト市場分析
9.1 ブラジル
9.1.1 過去動向(2018-2024)
9.1.2 予測動向(2025-2034)
9.2 アルゼンチン
9.2.1 過去動向(2018-2024)
9.2.2 予測動向(2025-2034)
9.3 メキシコ
9.3.1 過去動向(2018-2024)
9.3.2 予測動向(2025-2034)
9.4 その他
10 中東・アフリカ オンサーキットテスト市場分析
10.1 サウジアラビア
10.1.1 過去動向(2018-2024年)
10.1.2 予測動向(2025-2034年)
10.2 アラブ首長国連邦
10.2.1 過去動向(2018-2024年)
10.2.2 予測動向(2025-2034年)
10.3 ナイジェリア
10.3.1 過去動向(2018-2024年)
10.3.2 予測動向(2025-2034年)
10.4 南アフリカ
10.4.1 過去動向(2018-2024年)
10.4.2 予測動向(2025-2034年)
10.5 その他
11 市場ダイナミクス
11.1 SWOT分析
11.1.1 強み
11.1.2 弱み
11.1.3 機会
11.1.4 脅威
11.2 ポーターの5つの力分析
11.2.1 供給者の交渉力
11.2.2 購入者の交渉力
11.2.3 新規参入の脅威
11.2.4 競争の激しさ
11.2.5 代替品の脅威
11.3 需要の主要指標
11.4 価格の主要指標
12 競争環境
12.1 サプライヤー選定
12.2 主要グローバルプレイヤー
12.3 主要地域プレイヤー
12.4 主要プレイヤーの戦略
12.5 企業プロファイル
12.5.1 テラダイン社
12.5.1.1 会社概要
12.5.1.2 製品ポートフォリオ
12.5.1.3 顧客層と実績
12.5.1.4 認証
12.5.2 キーサイト・テクノロジーズ社
12.5.2.1 会社概要
12.5.2.2 製品ポートフォリオ
12.5.2.3 顧客層と実績
12.5.2.4 認証
12.5.3 日置電気株式会社
12.5.3.1 会社概要
12.5.3.2 製品ポートフォリオ
12.5.3.3 顧客層と実績
12.5.3.4 認証
12.5.4 Spea S.p.A
12.5.4.1 会社概要
12.5.4.2 製品ポートフォリオ
12.5.4.3 顧客層と実績
12.5.4.4 認証
12.5.5 Acculogic, Inc
12.5.5.1 会社概要
12.5.5.2 製品ポートフォリオ
12.5.5.3 対象人口層と実績
12.5.5.4 認証
12.5.6 Konrad GmbH
12.5.6.1 会社概要
12.5.6.2 製品ポートフォリオ
12.5.6.3 対象人口層と実績
12.5.6.4 認証
12.5.7 セイカ機械株式会社
12.5.7.1 会社概要
12.5.7.2 製品ポートフォリオ
12.5.7.3 顧客層と実績
12.5.7.4 認証
12.5.8 共立テストシステム株式会社
12.5.8.1 会社概要
12.5.8.2 製品ポートフォリオ
12.5.8.3 顧客層と実績
12.5.8.4 認証
12.5.9 ディジタルテスト社
12.5.9.1 会社概要
12.5.9.2 製品ポートフォリオ
12.5.9.3 顧客層と実績
12.5.9.4 認証
12.5.10 その他
1.1 Market Size 2024-2025
1.2 Market Growth 2025(F)-2034(F)
1.3 Key Demand Drivers
1.4 Key Players and Competitive Structure
1.5 Industry Best Practices
1.6 Recent Trends and Developments
1.7 Industry Outlook
2 Market Overview and Stakeholder Insights
2.1 Market Trends
2.2 Key Verticals
2.3 Key Regions
2.4 Supplier Power
2.5 Buyer Power
2.6 Key Market Opportunities and Risks
2.7 Key Initiatives by Stakeholders
3 Economic Summary
3.1 GDP Outlook
3.2 GDP Per Capita Growth
3.3 Inflation Trends
3.4 Democracy Index
3.5 Gross Public Debt Ratios
3.6 Balance of Payment (BoP) Position
3.7 Population Outlook
3.8 Urbanisation Trends
4 Country Risk Profiles
4.1 Country Risk
4.2 Business Climate
5 Global In-Circuit Test Market Analysis
5.1 Key Industry Highlights
5.2 Global In-Circuit Test Historical Market (2018-2024)
5.3 Global In-Circuit Test Market Forecast (2025-2034)
5.4 Global In-Circuit Test Market by Type
5.4.1 Analogue
5.4.1.1 Historical Trend (2018-2024)
5.4.1.2 Forecast Trend (2025-2034)
5.4.2 Mixed
5.4.2.1 Historical Trend (2018-2024)
5.4.2.2 Forecast Trend (2025-2034)
5.5 Global In-Circuit Test Market by Portability
5.5.1 Compact
5.5.1.1 Historical Trend (2018-2024)
5.5.1.2 Forecast Trend (2025-2034)
5.5.2 Benchtop
5.5.2.1 Historical Trend (2018-2024)
5.5.2.2 Forecast Trend (2025-2034)
5.6 Global In-Circuit Test Market by Application
5.6.1 Aerospace, Defence and Government Services
5.6.1.1 Historical Trend (2018-2024)
5.6.1.2 Forecast Trend (2025-2034)
5.6.2 Consumer Electronics
5.6.2.1 Historical Trend (2018-2024)
5.6.2.2 Forecast Trend (2025-2034)
5.6.3 Medical Equipment
5.6.3.1 Historical Trend (2018-2024)
5.6.3.2 Forecast Trend (2025-2034)
5.6.4 Wireless Communication
5.6.4.1 Historical Trend (2018-2024)
5.6.4.2 Forecast Trend (2025-2034)
5.6.5 Others
5.7 Global In-Circuit Test Market by Region
5.7.1 North America
5.7.1.1 Historical Trend (2018-2024)
5.7.1.2 Forecast Trend (2025-2034)
5.7.2 Europe
5.7.2.1 Historical Trend (2018-2024)
5.7.2.2 Forecast Trend (2025-2034)
5.7.3 Asia Pacific
5.7.3.1 Historical Trend (2018-2024)
5.7.3.2 Forecast Trend (2025-2034)
5.7.4 Latin America
5.7.4.1 Historical Trend (2018-2024)
5.7.4.2 Forecast Trend (2025-2034)
5.7.5 Middle East and Africa
5.7.5.1 Historical Trend (2018-2024)
5.7.5.2 Forecast Trend (2025-2034)
6 North America In-Circuit Test Market Analysis
6.1 United States of America
6.1.1 Historical Trend (2018-2024)
6.1.2 Forecast Trend (2025-2034)
6.2 Canada
6.2.1 Historical Trend (2018-2024)
6.2.2 Forecast Trend (2025-2034)
7 Europe In-Circuit Test Market Analysis
7.1 United Kingdom
7.1.1 Historical Trend (2018-2024)
7.1.2 Forecast Trend (2025-2034)
7.2 Germany
7.2.1 Historical Trend (2018-2024)
7.2.2 Forecast Trend (2025-2034)
7.3 France
7.3.1 Historical Trend (2018-2024)
7.3.2 Forecast Trend (2025-2034)
7.4 Italy
7.4.1 Historical Trend (2018-2024)
7.4.2 Forecast Trend (2025-2034)
7.5 Others
8 Asia Pacific In-Circuit Test Market Analysis
8.1 China
8.1.1 Historical Trend (2018-2024)
8.1.2 Forecast Trend (2025-2034)
8.2 Japan
8.2.1 Historical Trend (2018-2024)
8.2.2 Forecast Trend (2025-2034)
8.3 India
8.3.1 Historical Trend (2018-2024)
8.3.2 Forecast Trend (2025-2034)
8.4 ASEAN
8.4.1 Historical Trend (2018-2024)
8.4.2 Forecast Trend (2025-2034)
8.5 Australia
8.5.1 Historical Trend (2018-2024)
8.5.2 Forecast Trend (2025-2034)
8.6 Others
9 Latin America In-Circuit Test Market Analysis
9.1 Brazil
9.1.1 Historical Trend (2018-2024)
9.1.2 Forecast Trend (2025-2034)
9.2 Argentina
9.2.1 Historical Trend (2018-2024)
9.2.2 Forecast Trend (2025-2034)
9.3 Mexico
9.3.1 Historical Trend (2018-2024)
9.3.2 Forecast Trend (2025-2034)
9.4 Others
10 Middle East and Africa In-Circuit Test Market Analysis
10.1 Saudi Arabia
10.1.1 Historical Trend (2018-2024)
10.1.2 Forecast Trend (2025-2034)
10.2 United Arab Emirates
10.2.1 Historical Trend (2018-2024)
10.2.2 Forecast Trend (2025-2034)
10.3 Nigeria
10.3.1 Historical Trend (2018-2024)
10.3.2 Forecast Trend (2025-2034)
10.4 South Africa
10.4.1 Historical Trend (2018-2024)
10.4.2 Forecast Trend (2025-2034)
10.5 Others
11 Market Dynamics
11.1 SWOT Analysis
11.1.1 Strengths
11.1.2 Weaknesses
11.1.3 Opportunities
11.1.4 Threats
11.2 Porter’s Five Forces Analysis
11.2.1 Supplier’s Power
11.2.2 Buyer’s Power
11.2.3 Threat of New Entrants
11.2.4 Degree of Rivalry
11.2.5 Threat of Substitutes
11.3 Key Indicators for Demand
11.4 Key Indicators for Price
12 Competitive Landscape
12.1 Supplier Selection
12.2 Key Global Players
12.3 Key Regional Players
12.4 Key Player Strategies
12.5 Company Profiles
12.5.1 Teradyne, Inc
12.5.1.1 Company Overview
12.5.1.2 Product Portfolio
12.5.1.3 Demographic Reach and Achievements
12.5.1.4 Certifications
12.5.2 Keysight Technologies, Inc
12.5.2.1 Company Overview
12.5.2.2 Product Portfolio
12.5.2.3 Demographic Reach and Achievements
12.5.2.4 Certifications
12.5.3 Hioki E.E. CORPORATION
12.5.3.1 Company Overview
12.5.3.2 Product Portfolio
12.5.3.3 Demographic Reach and Achievements
12.5.3.4 Certifications
12.5.4 Spea S.p.A
12.5.4.1 Company Overview
12.5.4.2 Product Portfolio
12.5.4.3 Demographic Reach and Achievements
12.5.4.4 Certifications
12.5.5 Acculogic, Inc
12.5.5.1 Company Overview
12.5.5.2 Product Portfolio
12.5.5.3 Demographic Reach and Achievements
12.5.5.4 Certifications
12.5.6 Konrad GmbH
12.5.6.1 Company Overview
12.5.6.2 Product Portfolio
12.5.6.3 Demographic Reach and Achievements
12.5.6.4 Certifications
12.5.7 Seika Machinery, Inc
12.5.7.1 Company Overview
12.5.7.2 Product Portfolio
12.5.7.3 Demographic Reach and Achievements
12.5.7.4 Certifications
12.5.8 Kyoritsu Test System Corporation
12.5.8.1 Company Overview
12.5.8.2 Product Portfolio
12.5.8.3 Demographic Reach and Achievements
12.5.8.4 Certifications
12.5.9 Digitaltest GmbH
12.5.9.1 Company Overview
12.5.9.2 Product Portfolio
12.5.9.3 Demographic Reach and Achievements
12.5.9.4 Certifications
12.5.10 Others
| ※参考情報 回路内テスト(In-Circuit Test、ICT)は、電子回路基板上の部品や接続の正常性を評価するための手法です。このテストは、特に産業用の電子機器や消費者向けの電子製品において、製造段階での品質管理の重要な要素となっています。回路内テストは、基板が製造された後に行われるため、製品の信頼性を確保し、不良品を市場に出すリスクを低減する目的があります。 回路内テストの基本的な概念は、テスト対象の基板に対して、特別なテスト用のプローブを使用して各コンポーネントや回路の動作状態を確認することです。この際、基板に電流や電圧を印加し、正常な動作を示す信号が返ってくるかどうかをチェックします。これにより、部品の故障や接続不良、半田不良などが早期に発見できるのです。 回路内テストの種類には、いくつかの手法があります。最も一般的な方法は、テスタと呼ばれる専用の測定装置を用いる手法です。テスタは、テストプログラムに基づいて、各部品に対して所定の電圧や電流を印加し、その応答を測定します。これにより、各部品の正しい動作を確認することができます。また、 boundary scan と呼ばれる手法もあり、これは回路の端子に信号を送信し、その応答によって内部の配線状況を推測する方法です。この手法は、複雑な回路に特に有用です。 回路内テストの用途は非常に広範です。最も一般的な用途は、製造プロセスにおける品質管理ですが、修理や保守の際にも用いられます。故障した基板を修理する際に、どの部分が不良なのかを特定するために回路内テストを行うことがあります。これにより、修理の効率を高め、コスト削減にも寄与します。 関連技術としては、自動テスト機器(ATE)があります。自動テスト機器は、複雑なテストを自動で実行することができ、高速に大量の基板をテストすることが可能です。また、基板の設計段階からテストしやすいように配慮されたテストポイントの配置も重要な要素です。ダイアドリスト法と呼ばれる手法を使うことで、テストポイントを最適化し、テストの信頼性を向上させることができます。 さらに、回路内テストは、モジュール化された電子機器においても重要です。特に、モジュール単位でテストすることで、製品全体の品質を維持しながら、個々のモジュールが正常に機能するかどうかをチェックします。このアプローチは、製品化のスピードも高めることができます。 また、最近では、IoT(Internet of Things)技術の普及により、回路内テストの重要性が増しています。IoTデバイスはネットワークに接続されているため、一つのデバイスの故障が多くのユーザーに影響を与える可能性があります。そのため、製造過程でのテスト精度を向上させる必要があり、回路内テストはその対策の一環として位置づけられています。 総じて、回路内テストは感度の高い技術であり、電子機器の信頼性と品質を確保するために不可欠です。技術の進化とともに、ICTは今後もさまざまな分野で利用され、品質管理の一助となることでしょう。新しい手法や関連技術の開発が進む中で、回路内テストはその重要性を増すばかりです。これにより、より高性能で信頼性のある電子機器の製造が実現することでしょう。 |
❖ 免責事項 ❖
http://www.globalresearch.jp/disclaimer

-gr.jpg)
