第1章:序論
1.1. レポートの概要
1.2. 主要市場セグメント
1.3. ステークホルダーにとっての主なメリット
1.4. 調査方法
1.4.1. 一次調査
1.4.2. 二次調査
1.4.3. アナリストツールとモデル
第2章:エグゼクティブサマリー
2.1. CXOの視点
第3章:市場概要
3.1. 市場の定義と範囲
3.2. 主な調査結果
3.2.1. 主要な影響要因
3.2.2. 主要な投資対象地域
3.3. ポーターの5つの力分析
3.3.1. サプライヤーの交渉力
3.3.2. バイヤーの交渉力
3.3.3.代替品の脅威
3.3.4. 新規参入の脅威
3.3.5. 競争の激化
3.4. 市場ダイナミクス
3.4.1. 推進要因
3.4.1.1. 持続可能性
3.4.1.2. 豊富なエネルギー
3.4.1.3. コスト競争力のあるエネルギー
3.4.2. 制約
3.4.2.1. 持続的な核融合反応を保証するアプローチはない
3.4.2.2. 放射性廃棄物
3.4.3. 機会
3.4.3.1. 再生可能資源へのエネルギーシフト
3.5. COVID-19による市場への影響分析
3.6. 主要規制分析
3.7. 特許情勢
3.8.バリューチェーン分析
第4章:核融合エネルギー市場(技術別)
4.1. 概要
4.1.1. 市場規模と予測
4.2. 慣性閉じ込め
4.2.1. 主要市場動向、成長要因、機会
4.2.2. 地域別市場規模と予測
4.2.3. 国別市場シェア分析
4.3. 磁気閉じ込め
4.3.1. 主要市場動向、成長要因、機会
4.3.2. 地域別市場規模と予測
4.3.3. 国別市場シェア分析
第5章:核融合エネルギー市場(燃料別)
5.1. 概要
5.1.1. 市場規模と予測
5.2. 重水素・三重水素
5.2.1.主要市場動向、成長要因、機会
5.2.2. 地域別市場規模と予測
5.2.3. 国別市場シェア分析
5.3. 重水素
5.3.1. 主要市場動向、成長要因、機会
5.3.2. 地域別市場規模と予測
5.3.3. 国別市場シェア分析
5.4. 重水素・ヘリウム3
5.4.1. 主要市場動向、成長要因、機会
5.4.2. 地域別市場規模と予測
5.4.3. 国別市場シェア分析
5.5. 陽子・ホウ素
5.5.1. 主要市場動向、成長要因、機会
5.5.2. 地域別市場規模と予測
5.5.3. 国別市場シェア分析
第6章:核融合エネルギー市場(地域別)
6.1.概要
6.1.1. 地域別市場規模と予測
6.2. 北米
6.2.1. 主要トレンドと機会
6.2.2. 技術別市場規模と予測
6.2.3. 燃料別市場規模と予測
6.2.4. 国別市場規模と予測
6.2.4.1. 米国
6.2.4.1.1. 主要市場トレンド、成長要因、機会
6.2.4.1.2. 技術別市場規模と予測
6.2.4.1.3. 燃料別市場規模と予測
6.2.4.2. カナダ
6.2.4.2.1. 主要市場トレンド、成長要因、機会
6.2.4.2.2. 技術別市場規模と予測
6.2.4.2.3.燃料別市場規模と予測
6.2.4.3. メキシコ
6.2.4.3.1. 主要な市場動向、成長要因、機会
6.2.4.3.2. 技術別市場規模と予測
6.2.4.3.3. 燃料別市場規模と予測
6.3. ヨーロッパ
6.3.1. 主要な市場動向と機会
6.3.2. 技術別市場規模と予測
6.3.3. 燃料別市場規模と予測
6.3.4. 国別市場規模と予測
6.3.4.1. ドイツ
6.3.4.1.1. 主要な市場動向、成長要因、機会
6.3.4.1.2. 技術別市場規模と予測
6.3.4.1.3. 燃料別市場規模と予測
6.3.4.2.英国
6.3.4.2.1. 主要市場動向、成長要因、機会
6.3.4.2.2. 市場規模と予測(技術別)
6.3.4.2.3. 市場規模と予測(燃料別)
6.3.4.3. フランス
6.3.4.3.1. 主要市場動向、成長要因、機会
6.3.4.3.2. 市場規模と予測(技術別)
6.3.4.3.3. 市場規模と予測(燃料別)
6.3.4.4. イタリア
6.3.4.4.1. 主要市場動向、成長要因、機会
6.3.4.4.2. 市場規模と予測(技術別)
6.3.4.4.3. 市場規模と予測(燃料別)
6.3.4.5. スペイン
6.3.4.5.1.主要な市場動向、成長要因、機会
6.3.4.5.2. 市場規模と予測(技術別)
6.3.4.5.3. 市場規模と予測(燃料別)
6.3.4.6. その他の欧州地域
6.3.4.6.1. 主要な市場動向、成長要因、機会
6.3.4.6.2. 市場規模と予測(技術別)
6.3.4.6.3. 市場規模と予測(燃料別)
6.4. アジア太平洋地域
6.4.1. 主要な市場動向と機会
6.4.2. 市場規模と予測(技術別)
6.4.3. 市場規模と予測(燃料別)
6.4.4. 市場規模と予測(国別)
6.4.4.1. 中国
6.4.4.1.1. 主要な市場動向、成長要因、機会
6.4.4.1.2.市場規模と予測(技術別)
6.4.4.1.3. 市場規模と予測(燃料別)
6.4.4.2. 日本
6.4.4.2.1. 主要市場動向、成長要因、機会
6.4.4.2.2. 市場規模と予測(技術別)
6.4.4.2.3. 市場規模と予測(燃料別)
6.4.4.3. インド
6.4.4.3.1. 主要市場動向、成長要因、機会
6.4.4.3.2. 市場規模と予測(技術別)
6.4.4.3.3. 市場規模と予測(燃料別)
6.4.4.4. 韓国
6.4.4.4.1. 主要市場動向、成長要因、機会
6.4.4.4.2. 市場規模と予測(技術別)
6.4.4.4.3.燃料別市場規模と予測
6.4.4.5. オーストラリア
6.4.4.5.1. 主要市場動向、成長要因、機会
6.4.4.5.2. 技術別市場規模と予測
6.4.4.5.3. 燃料別市場規模と予測
6.4.4.6. その他のアジア太平洋地域
6.4.4.6.1. 主要市場動向、成長要因、機会
6.4.4.6.2. 技術別市場規模と予測
6.4.4.6.3. 燃料別市場規模と予測
6.5. LAMEA
6.5.1. 主要動向と機会
6.5.2. 技術別市場規模と予測
6.5.3. 燃料別市場規模と予測
6.5.4. 国別市場規模と予測
6.5.4.1.ブラジル
6.5.4.1.1. 主要市場動向、成長要因、機会
6.5.4.1.2. 市場規模と予測(技術別)
6.5.4.1.3. 市場規模と予測(燃料別)
6.5.4.2. サウジアラビア
6.5.4.2.1. 主要市場動向、成長要因、機会
6.5.4.2.2. 市場規模と予測(技術別)
6.5.4.2.3. 市場規模と予測(燃料別)
6.5.4.3. 南アフリカ
6.5.4.3.1. 主要市場動向、成長要因、機会
6.5.4.3.2. 市場規模と予測(技術別)
6.5.4.3.3. 市場規模と予測(燃料別)
6.5.4.4. LAMEAのその他の地域
6.5.4.4.1.主要な市場動向、成長要因、機会
6.5.4.4.2. 市場規模と予測(技術別)
6.5.4.4.3. 市場規模と予測(燃料別)
第7章:競争環境
7.1. はじめに
7.2. 成功戦略
7.3. 上位10社の製品マッピング
7.4. 競合ダッシュボード
7.5. 競合ヒートマップ
7.6. 2030年における上位企業のポジショニング
第8章:企業概要
8.1. Agni Fusion Energy
8.1.1. 会社概要
8.1.2. 主要役員
8.1.3. 会社概要
8.1.4. 事業セグメント
8.1.5. 製品ポートフォリオ
8.2. TAE Technologies, Inc.
8.2.1.会社概要
8.2.2. 主要役員
8.2.3. 会社概要
8.2.4. 事業セグメント
8.2.5. 製品ポートフォリオ
8.3. Helion Energy Inc.
8.3.1. 会社概要
8.3.2. 主要役員
8.3.3. 会社概要
8.3.4. 事業セグメント
8.3.5. 製品ポートフォリオ
8.4. Commonwealth Fusion Systems
8.4.1. 会社概要
8.4.2. 主要役員
8.4.3. 会社概要
8.4.4. 事業セグメント
8.4.5. 製品ポートフォリオ
8.4.6. 主要な戦略的動きと展開
8.5. General Fusion
8.5.1. 会社概要
8.5.2. 主要役員
8.5.3.会社概要
8.5.4. 事業セグメント
8.5.5. 製品ポートフォリオ
8.6. Tokamak Energy Ltd.
8.6.1. 会社概要
8.6.2. 主要役員
8.6.3. 会社概要
8.6.4. 事業セグメント
8.6.5. 製品ポートフォリオ
8.7. Zap Energy Inc.
8.7.1. 会社概要
8.7.2. 主要役員
8.7.3. 会社概要
8.7.4. 事業セグメント
8.7.5. 製品ポートフォリオ
8.8. First Light Fusion
8.8.1. 会社概要
8.8.2. 主要役員
8.8.3. 会社概要
8.8.4. 事業セグメント
8.8.5. 製品ポートフォリオ
8.9.ロッキード・マーティン・コーポレーション
8.9.1. 会社概要
8.9.2. 主要役員
8.9.3. 会社概要
8.9.4. 事業セグメント
8.9.5. 製品ポートフォリオ
8.9.6. 業績
8.10. ハイパージェット・フュージョン・コーポレーション
8.10.1. 会社概要
8.10.2. 主要役員
8.10.3. 会社概要
8.10.4. 事業セグメント
8.10.5. 製品ポートフォリオ
8.11. HB11エナジー・ホールディングス社
8.11.1. 会社概要
8.11.2. 主要役員
8.11.3. 会社概要
8.11.4. 事業セグメント
8.11.5. 製品ポートフォリオ
8.12.ルネッサンス・フュージョン
8.12.1. 会社概要
8.12.2. 主要役員
8.12.3. 会社概要
8.12.4. 事業セグメント
8.12.5. 製品ポートフォリオ
8.13. マーベル・フュージョン
8.13.1. 会社概要
8.13.2. 主要役員
8.13.3. 会社概要
8.13.4. 事業セグメント
8.13.5. 製品ポートフォリオ
8.14. 京都フュージョニアリング株式会社
8.14.1. 会社概要
8.14.2. 主要役員
8.14.3. 会社概要
8.14.4. 事業セグメント
8.14.5. 製品ポートフォリオ
CHAPTER 1: INTRODUCTION1.1. Report description
1.2. Key market segments
1.3. Key benefits to the stakeholders
1.4. Research Methodology
1.4.1. Primary research
1.4.2. Secondary research
1.4.3. Analyst tools and models
CHAPTER 2: EXECUTIVE SUMMARY
2.1. CXO Perspective
CHAPTER 3: MARKET OVERVIEW
3.1. Market definition and scope
3.2. Key findings
3.2.1. Top impacting factors
3.2.2. Top investment pockets
3.3. Porter’s five forces analysis
3.3.1. Bargaining power of suppliers
3.3.2. Bargaining power of buyers
3.3.3. Threat of substitutes
3.3.4. Threat of new entrants
3.3.5. Intensity of rivalry
3.4. Market dynamics
3.4.1. Drivers
3.4.1.1. Sustainability
3.4.1.2. Abundant Energy
3.4.1.3. Cost-competitve Energy
3.4.2. Restraints
3.4.2.1. No approach guarantees sustained fusion reaction
3.4.2.2. Radio-active wastes
3.4.3. Opportunities
3.4.3.1. Energy Shift towards renewable resources
3.5. COVID-19 Impact Analysis on the market
3.6. Key Regulation Analysis
3.7. Patent Landscape
3.8. Value Chain Analysis
CHAPTER 4: FUSION ENERGY MARKET, BY TECHNOLOGY
4.1. Overview
4.1.1. Market size and forecast
4.2. Inertial Confinement
4.2.1. Key market trends, growth factors and opportunities
4.2.2. Market size and forecast, by region
4.2.3. Market share analysis by country
4.3. Magnetic Confinement
4.3.1. Key market trends, growth factors and opportunities
4.3.2. Market size and forecast, by region
4.3.3. Market share analysis by country
CHAPTER 5: FUSION ENERGY MARKET, BY FUELS
5.1. Overview
5.1.1. Market size and forecast
5.2. Deuterium tritium
5.2.1. Key market trends, growth factors and opportunities
5.2.2. Market size and forecast, by region
5.2.3. Market share analysis by country
5.3. Deuterium
5.3.1. Key market trends, growth factors and opportunities
5.3.2. Market size and forecast, by region
5.3.3. Market share analysis by country
5.4. Deuterium helium 3
5.4.1. Key market trends, growth factors and opportunities
5.4.2. Market size and forecast, by region
5.4.3. Market share analysis by country
5.5. Proton Boron
5.5.1. Key market trends, growth factors and opportunities
5.5.2. Market size and forecast, by region
5.5.3. Market share analysis by country
CHAPTER 6: FUSION ENERGY MARKET, BY REGION
6.1. Overview
6.1.1. Market size and forecast By Region
6.2. North America
6.2.1. Key trends and opportunities
6.2.2. Market size and forecast, by Technology
6.2.3. Market size and forecast, by Fuels
6.2.4. Market size and forecast, by country
6.2.4.1. U.S.
6.2.4.1.1. Key market trends, growth factors and opportunities
6.2.4.1.2. Market size and forecast, by Technology
6.2.4.1.3. Market size and forecast, by Fuels
6.2.4.2. Canada
6.2.4.2.1. Key market trends, growth factors and opportunities
6.2.4.2.2. Market size and forecast, by Technology
6.2.4.2.3. Market size and forecast, by Fuels
6.2.4.3. Mexico
6.2.4.3.1. Key market trends, growth factors and opportunities
6.2.4.3.2. Market size and forecast, by Technology
6.2.4.3.3. Market size and forecast, by Fuels
6.3. Europe
6.3.1. Key trends and opportunities
6.3.2. Market size and forecast, by Technology
6.3.3. Market size and forecast, by Fuels
6.3.4. Market size and forecast, by country
6.3.4.1. Germany
6.3.4.1.1. Key market trends, growth factors and opportunities
6.3.4.1.2. Market size and forecast, by Technology
6.3.4.1.3. Market size and forecast, by Fuels
6.3.4.2. UK
6.3.4.2.1. Key market trends, growth factors and opportunities
6.3.4.2.2. Market size and forecast, by Technology
6.3.4.2.3. Market size and forecast, by Fuels
6.3.4.3. France
6.3.4.3.1. Key market trends, growth factors and opportunities
6.3.4.3.2. Market size and forecast, by Technology
6.3.4.3.3. Market size and forecast, by Fuels
6.3.4.4. Italy
6.3.4.4.1. Key market trends, growth factors and opportunities
6.3.4.4.2. Market size and forecast, by Technology
6.3.4.4.3. Market size and forecast, by Fuels
6.3.4.5. Spain
6.3.4.5.1. Key market trends, growth factors and opportunities
6.3.4.5.2. Market size and forecast, by Technology
6.3.4.5.3. Market size and forecast, by Fuels
6.3.4.6. Rest of Europe
6.3.4.6.1. Key market trends, growth factors and opportunities
6.3.4.6.2. Market size and forecast, by Technology
6.3.4.6.3. Market size and forecast, by Fuels
6.4. Asia-Pacific
6.4.1. Key trends and opportunities
6.4.2. Market size and forecast, by Technology
6.4.3. Market size and forecast, by Fuels
6.4.4. Market size and forecast, by country
6.4.4.1. China
6.4.4.1.1. Key market trends, growth factors and opportunities
6.4.4.1.2. Market size and forecast, by Technology
6.4.4.1.3. Market size and forecast, by Fuels
6.4.4.2. Japan
6.4.4.2.1. Key market trends, growth factors and opportunities
6.4.4.2.2. Market size and forecast, by Technology
6.4.4.2.3. Market size and forecast, by Fuels
6.4.4.3. India
6.4.4.3.1. Key market trends, growth factors and opportunities
6.4.4.3.2. Market size and forecast, by Technology
6.4.4.3.3. Market size and forecast, by Fuels
6.4.4.4. South Korea
6.4.4.4.1. Key market trends, growth factors and opportunities
6.4.4.4.2. Market size and forecast, by Technology
6.4.4.4.3. Market size and forecast, by Fuels
6.4.4.5. Australia
6.4.4.5.1. Key market trends, growth factors and opportunities
6.4.4.5.2. Market size and forecast, by Technology
6.4.4.5.3. Market size and forecast, by Fuels
6.4.4.6. Rest of Asia-Pacific
6.4.4.6.1. Key market trends, growth factors and opportunities
6.4.4.6.2. Market size and forecast, by Technology
6.4.4.6.3. Market size and forecast, by Fuels
6.5. LAMEA
6.5.1. Key trends and opportunities
6.5.2. Market size and forecast, by Technology
6.5.3. Market size and forecast, by Fuels
6.5.4. Market size and forecast, by country
6.5.4.1. Brazil
6.5.4.1.1. Key market trends, growth factors and opportunities
6.5.4.1.2. Market size and forecast, by Technology
6.5.4.1.3. Market size and forecast, by Fuels
6.5.4.2. Saudi Arabia
6.5.4.2.1. Key market trends, growth factors and opportunities
6.5.4.2.2. Market size and forecast, by Technology
6.5.4.2.3. Market size and forecast, by Fuels
6.5.4.3. South Africa
6.5.4.3.1. Key market trends, growth factors and opportunities
6.5.4.3.2. Market size and forecast, by Technology
6.5.4.3.3. Market size and forecast, by Fuels
6.5.4.4. Rest of LAMEA
6.5.4.4.1. Key market trends, growth factors and opportunities
6.5.4.4.2. Market size and forecast, by Technology
6.5.4.4.3. Market size and forecast, by Fuels
CHAPTER 7: COMPETITIVE LANDSCAPE
7.1. Introduction
7.2. Top winning strategies
7.3. Product Mapping of Top 10 Player
7.4. Competitive Dashboard
7.5. Competitive Heatmap
7.6. Top player positioning, 2030
CHAPTER 8: COMPANY PROFILES
8.1. Agni Fusion Energy
8.1.1. Company overview
8.1.2. Key Executives
8.1.3. Company snapshot
8.1.4. Operating business segments
8.1.5. Product portfolio
8.2. TAE Technologies, Inc.
8.2.1. Company overview
8.2.2. Key Executives
8.2.3. Company snapshot
8.2.4. Operating business segments
8.2.5. Product portfolio
8.3. Helion Energy Inc.
8.3.1. Company overview
8.3.2. Key Executives
8.3.3. Company snapshot
8.3.4. Operating business segments
8.3.5. Product portfolio
8.4. Commonwealth Fusion Systems
8.4.1. Company overview
8.4.2. Key Executives
8.4.3. Company snapshot
8.4.4. Operating business segments
8.4.5. Product portfolio
8.4.6. Key strategic moves and developments
8.5. General Fusion
8.5.1. Company overview
8.5.2. Key Executives
8.5.3. Company snapshot
8.5.4. Operating business segments
8.5.5. Product portfolio
8.6. Tokamak Energy Ltd.
8.6.1. Company overview
8.6.2. Key Executives
8.6.3. Company snapshot
8.6.4. Operating business segments
8.6.5. Product portfolio
8.7. Zap Energy Inc.
8.7.1. Company overview
8.7.2. Key Executives
8.7.3. Company snapshot
8.7.4. Operating business segments
8.7.5. Product portfolio
8.8. First Light Fusion
8.8.1. Company overview
8.8.2. Key Executives
8.8.3. Company snapshot
8.8.4. Operating business segments
8.8.5. Product portfolio
8.9. Lockheed Martin Corporation
8.9.1. Company overview
8.9.2. Key Executives
8.9.3. Company snapshot
8.9.4. Operating business segments
8.9.5. Product portfolio
8.9.6. Business performance
8.10. Hyperjet Fusion Corporation
8.10.1. Company overview
8.10.2. Key Executives
8.10.3. Company snapshot
8.10.4. Operating business segments
8.10.5. Product portfolio
8.11. HB11 Energy Holdings Pty Ltd
8.11.1. Company overview
8.11.2. Key Executives
8.11.3. Company snapshot
8.11.4. Operating business segments
8.11.5. Product portfolio
8.12. Renaissance Fusion
8.12.1. Company overview
8.12.2. Key Executives
8.12.3. Company snapshot
8.12.4. Operating business segments
8.12.5. Product portfolio
8.13. Marvel Fusion
8.13.1. Company overview
8.13.2. Key Executives
8.13.3. Company snapshot
8.13.4. Operating business segments
8.13.5. Product portfolio
8.14. Kyoto Fusioneering Ltd.
8.14.1. Company overview
8.14.2. Key Executives
8.14.3. Company snapshot
8.14.4. Operating business segments
8.14.5. Product portfolio
| ※参考情報 核融合エネルギーとは、軽い原子核が非常に高い温度と圧力の下で結合し、より重い原子核を形成する過程で発生するエネルギーのことです。このプロセスは、太陽やその他の星々で自然に発生しており、星内部の核融合反応によって莫大なエネルギーが放出されています。核融合は、原子力発電や化石燃料に代わる持続可能なエネルギー源として注目されています。 核融合エネルギーの代表的な種類として、重水素と三重水素を用いるD-T反応(重水素-三重水素反応)が挙げられます。この反応では、重水素(2H)と三重水素(3H)が融合し、ヘリウム(4He)と中性子を生成します。この反応は高いエネルギーを発生させるため、核融合研究の主要な焦点となっています。その他にも、重水素同士の反応や、リチウムと重水素、さらにはヘリウムとリチウムを用いる反応など、さまざまな核融合反応が研究されていますが、いずれも高温・高圧の条件が必要です。 核融合エネルギーの用途は多岐にわたり、発電が主な目的として考えられています。発電所において核融合を利用することができれば、膨大な量のエネルギーを安定的に供給することが可能となります。また、核融合反応で生成されたエネルギーは、二酸化炭素を排出せず、放射性廃棄物の問題も少ないため、環境に優しいエネルギー源として長期的に利用することが期待されています。 また、核融合エネルギーは宇宙探査にも利用される可能性があります。例えば、宇宙船に核融合エンジンを搭載することで、遠い惑星に向けた長期間の航行が可能になるかもしれません。核融合による propulsion は、化学燃料よりもずっと高いエネルギー密度を提供し、宇宙探査の新しい地平を切り開くことが考えられています。 最近の技術の進展により、核融合エネルギーの実用化に向けた取り組みが加速しています。国際熱核融合実験炉(ITER)や国内の研究施設でのさまざまな実験プロジェクトが進められています。ITERプロジェクトは、国際的な共同研究により、核融合の商業化を目指した大規模な実験施設として注目されています。ITERでは、プラズマを閉じ込めるためのトライポール型の磁場を用いて高温プラズマを生成し、それを安定的に維持することを目指しています。 核融合エネルギーの関連技術には、プラズマ物理学、磁気閉じ込め技術、レーザー技術、材料科学などがあります。プラズマ物理学は、核融合が起こる条件やその挙動を理解するための基礎的な学問であり、核融合装置の設計や運転に不可欠です。また、磁気閉じ込め技術では、強力な磁場を用いて高温プラズマを効率的に保持する方法が研究されています。これにより、核融合反応を持続的に行うための条件が整えられます。 さらに、核融合の実用化に向けた課題として、エネルギーを効率的に取り出すことや、プラズマの安定性を保つこと、さらに、燃料供給や冷却システムの開発が挙げられます。これらの技術は、核融合発電の実現には不可欠であり、今後の研究開発が鍵となります。 核融合エネルギーは、未来の持続可能なエネルギー源としての可能性を秘めています。その実用化が進むことで、クリーンで安定したエネルギー供給が実現し、世界のエネルギー課題に対する解決策になることが期待されています。結果として、環境負荷の低減やエネルギー資源の安定化が進むことが望まれています。 |
❖ 免責事項 ❖
http://www.globalresearch.jp/disclaimer


